Thankfully, there is publicly available handwritten digits and its labels on the web that we can use. For more info, check out MNIST website. Even better, Keras has MNIST data module, so we will use it.
Use your favorite editor and create mnist.py file with the following:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from tensorflow.examples.tutorials.mnist import input_data | |
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) | |
from keras.models import Sequential | |
from keras.layers.core import Flatten, Dense, Lambda, Dropout, Activation | |
from keras.optimizers import SGD, Adam | |
from keras.layers.convolutional import Conv2D | |
from keras.layers.pooling import MaxPooling2D | |
X_train = mnist.train.images.reshape(-1, 28, 28, 1) | |
y_train = mnist.train.labels | |
X_test = mnist.test.images.reshape(-1, 28, 28, 1) | |
y_test = mnist.test.labels | |
input_shape = (28,28,1) | |
model = Sequential() | |
model.add(Conv2D(24, 5, 5, input_shape=input_shape, init='he_normal')) # output = 24x24x24 | |
model.add(Activation('elu')) | |
model.add(MaxPooling2D((2,2), border_mode='same')) # output = 12x12x24 | |
model.add(Conv2D(32, 5, 5, input_shape=input_shape, init='he_normal')) # output = 8x8x32 | |
model.add(Activation('elu')) | |
model.add(MaxPooling2D((2,2), border_mode='same')) # output = 4x4x32 | |
model.add(Conv2D(48, 4, 4, input_shape=input_shape, init='he_normal')) # output = 1x1x48 | |
model.add(Activation('elu')) | |
model.add(Flatten()) # output = 48 | |
model.add(Dense(24, init='he_normal')) # output = 24 | |
model.add(Activation('elu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(10, init='he_normal')) # output = 10 | |
model.add(Activation('softmax')) | |
adam = Adam(lr=0.001) | |
model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy']) | |
model.fit(X_train, y_train, nb_epoch=10, batch_size=100) | |
loss_and_metrics = model.evaluate(X_test, y_test) | |
print('test accuracy: ' + str(loss_and_metrics[1])) # Accuracy | |
import numpy as np | |
idx = np.random.randint(0, X_test.shape[0]) | |
img = X_test[idx].reshape(28,28) | |
label = y_test[idx] | |
label = np.argmax(label) | |
import matplotlib.pyplot as plt | |
fig = plt.figure() | |
print('label = ' + str(label)) | |
pred = np.argmax(model.predict(X_test[idx].reshape(1,28,28,1))) | |
print('prediction = ' + str(pred)) | |
plt.imshow(img, cmap='gray') | |
plt.show() | |
Upon running the file with
$ python mnist.py
you will see convolutional network being trained with data and tested with unseen data with accuracy of about 99%!