Let's create a folder where all your web app files will reside.
$ mkdir ~/web_app
$ cd ~/web_app
Install Flas, Keras and OpenCV modules
$ pip install flask keras opencv-python
Next, create two more folders as below
$ mkdir templates uploads
Create server.py and copy the code below:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from flask import Flask, render_template, request, send_from_directory | |
import os | |
import urllib | |
from keras.models import load_model | |
from keras.applications import resnet50 | |
from keras.applications.imagenet_utils import preprocess_input, decode_predictions | |
import cv2 | |
import numpy as np | |
app = Flask(__name__) | |
PORT = '8888' | |
UPLOAD = 'uploads' | |
@app.route('/') | |
def index(): | |
return render_template("index.html", | |
title='ResNet50 Classification Demo') | |
@app.route('/download', methods=['POST']) | |
def download_image(): | |
address = request.form['address'] | |
filename = os.path.join(UPLOAD, address.split('/')[-1]) | |
with open(filename, 'wb') as f: | |
f.write(urllib.urlopen(address).read()) | |
return predict(filename) | |
@app.route('/upload', methods=['POST']) | |
def upload_image(): | |
f = request.files['image'] | |
filename = os.path.join(UPLOAD, f.filename) | |
f.save(filename) | |
return predict(filename) | |
@app.route('/' + UPLOAD + '/<path:path>') | |
def serve_files(path): | |
return send_from_directory(UPLOAD, path) | |
def predict(filename): | |
img = cv2.imread(filename) | |
img = cv2.resize(img, (224,224))[...,::-1] | |
img = np.expand_dims(img, axis=0).astype(np.float32) | |
x_batch = preprocess_input(img) | |
pred = model.predict(x_batch) | |
decode_result = decode_predictions(pred)[0] | |
result = [] | |
for r in decode_result: | |
result.append({'name':r[1], 'prob':r[2]*100}) | |
return render_template('predict.html', | |
filename=filename, | |
predictions=result) | |
if __name__ == "__main__": | |
os.environ["CUDA_VISIBLE_DEVICES"] = "" | |
model = resnet50.ResNet50(include_top=True, weights='imagenet') | |
app.run(host='0.0.0.0', port=PORT) |
Create templates/index.html file and copy the code below:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<html> | |
<head> | |
{% if title %} | |
<title>{{ title }}</title> | |
{% else %} | |
<title>Classification Demo</title> | |
{% endif %} | |
</head> | |
<body> | |
<form action="/download" method="POST"> | |
<fieldset> | |
<legend>Image URL</legend> | |
<input type="text" name="address" | |
value="http://cdn2-www.cattime.com/assets/uploads/gallery/ragdoll/ragdoll-cats-kittens-2.jpg" size="100"><br> | |
<input type="submit" value="Submit"> | |
</fieldset> | |
</form> | |
<br><br> | |
<form action="/upload" method="post" enctype="multipart/form-data"> | |
<fieldset> | |
<legend>Upload Image</legend> | |
<input type="file" name="image"> | |
<input type="submit" value="Upload your image" class="btn btn-primary"> | |
</fieldset> | |
</form> | |
</body> | |
</html> |
Create templates/predict.html file and copy the code below:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<html> | |
<head> | |
{% if title %} | |
<title>{{ title }}</title> | |
{% else %} | |
<title>Classification Demo</title> | |
{% endif %} | |
</head> | |
<body> | |
<img src={{ filename }} width="224" height="224"> | |
<br> | |
{% for pred in predictions %} | |
{{ pred.name }} : {{ pred.prob }} | |
<br> | |
{% endfor %} | |
<br> | |
</body> | |
</html> |
That's it! Your web app will classify a given image---either uploaded directly from the client or using the web url---using ResNet50 pre-trained network.
To run the server, run
$ python server.py
While the server is running, you can browse to http://SERVER_IP:8888 to view the web app, where of course SERVER_IP must be replaced with the server's actual IP address.