K-means clustering algorithm is to divide a set of points into k-clusters. The simplest algorithm is
1. choose k random points
2. cluster all points into corresponding k groups, where each point in the group is closest to the centroid
3. update the centroids by finding geometric centroids of the clusters
4. repeat steps 2 & 3 until satisfied
Below is my bare-minimum implementation in Tensorflow.
No comments:
Post a Comment