Let's dig in the code first.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <vector> | |
#include <stdio.h> | |
#include <time.h> | |
#include <stdlib.h> | |
#include <tictoc.h> | |
#include <assert.h> | |
using namespace std; | |
bool isSorted(const vector<int>& array) { | |
for (int i=1; i<array.size(); i++) | |
if (array[i] < array[i-1]) return false; | |
return true; | |
} | |
void swap(int array[], int i, int j) { | |
int temp = array[i]; | |
array[i] = array[j]; | |
array[j] = temp; | |
} | |
void quicksort1(int array[], int left, int right) { | |
#ifdef DEBUG | |
static int counter = 0; | |
counter++; | |
printf("#%d quicksort1 with %d,%d\n", counter, left, right); | |
#endif | |
if (left >= right) return; | |
int pivot = left; | |
int i = left+1, j = right; | |
while (true) { | |
while (i < j && array[i] <= array[pivot]) i++; | |
while (array[j] > array[pivot]) j--; | |
if (i >= j) break; | |
swap(array, i, j); | |
} | |
swap(array, pivot, j); | |
quicksort1(array, left, j-1); | |
quicksort1(array, j+1, right); | |
} | |
void quicksort2(int array[], int left, int right) { | |
#ifdef DEBUG | |
static int counter = 0; | |
counter++; | |
printf("#%d quicksort2 with %d,%d\n", counter, left, right); | |
#endif | |
if (left >= right) return; | |
int pivot = left; | |
int i = left+1, j = right; | |
while (true) { | |
while (i < j && array[i] < array[pivot]) i++; | |
while (array[j] > array[pivot]) j--; | |
if (i >= j) break; | |
swap(array, i++, j--); | |
} | |
swap(array, pivot, j); | |
quicksort2(array, left, j-1); | |
quicksort2(array, j+1, right); | |
} | |
int main(int argc, char** argv) { | |
const int NUM_ELEMENTS = atoi(argv[1]); | |
srand(time(NULL)); | |
vector<int> array(NUM_ELEMENTS); | |
int NUM_KEYS = atoi(argv[2]); | |
for (int i=0; i<NUM_ELEMENTS; i++) | |
array[i] = rand()%NUM_KEYS; | |
vector<int> array1(array), array2(array); | |
tic(); | |
quicksort1(&array1[0], 0, NUM_ELEMENTS-1); | |
toc(); | |
assert(isSorted(array1)); | |
tic(); | |
quicksort2(&array2[0], 0, NUM_ELEMENTS-1); | |
toc(); | |
assert(isSorted(array2)); | |
return 0; | |
}; |
What difference will this make? For an array with distinct keys, the difference is not as significant. However, when we have lots of distinct keys, the story changes. The first one performs extremely poorly when there are many identical keys, whereas the second one performs faster as the number of duplicate keys increases.
$ g++ qsort_analysis.cpp -g -ltictoc -O0 && ./a.out 10000000 10000000
Time elapsed: 2.067320s
Time elapsed: 1.842697s
$ g++ qsort_analysis.cpp -g -ltictoc -O0 && ./a.out 10000000 10000
Time elapsed: 10.985325s
Time elapsed: 1.441884s
How does such subtle difference make such large difference? We can analyze this by looking at an array with all the same keys and observe how many calls each quicksort is called in total.
#1 quicksort1 with 0,15
#2 quicksort1 with 0,14
#3 quicksort1 with 0,13
#4 quicksort1 with 0,12
#5 quicksort1 with 0,11
#6 quicksort1 with 0,10
#7 quicksort1 with 0,9
#8 quicksort1 with 0,8
#9 quicksort1 with 0,7
#10 quicksort1 with 0,6
#11 quicksort1 with 0,5
#12 quicksort1 with 0,4
#13 quicksort1 with 0,3
#14 quicksort1 with 0,2
#15 quicksort1 with 0,1
#16 quicksort1 with 0,0
#17 quicksort1 with 2,1
#18 quicksort1 with 3,2
#19 quicksort1 with 4,3
#20 quicksort1 with 5,4
#21 quicksort1 with 6,5
#22 quicksort1 with 7,6
#23 quicksort1 with 8,7
#24 quicksort1 with 9,8
#25 quicksort1 with 10,9
#26 quicksort1 with 11,10
#27 quicksort1 with 12,11
#28 quicksort1 with 13,12
#29 quicksort1 with 14,13
#30 quicksort1 with 15,14
#31 quicksort1 with 16,15
Time elapsed: 0.000057s
#1 quicksort2 with 0,15
#2 quicksort2 with 0,7
#3 quicksort2 with 0,3
#4 quicksort2 with 0,1
#5 quicksort2 with 0,0
#6 quicksort2 with 2,1
#7 quicksort2 with 3,3
#8 quicksort2 with 5,7
#9 quicksort2 with 5,5
#10 quicksort2 with 7,7
#11 quicksort2 with 9,15
#12 quicksort2 with 9,11
#13 quicksort2 with 9,9
#14 quicksort2 with 11,11
#15 quicksort2 with 13,15
#16 quicksort2 with 13,13
#17 quicksort2 with 15,15
Time elapsed: 0.000020s
As you can see above, the first version of quicksort is invoked about 2*N times where the second version is invoked about N times for given array of N elements all of equal keys. The reason is that for the first version, each partitioning will be extremely skewed over to the right, whereas for the second version the partition is always at the center, thus leading to much more efficiency.
No comments:
Post a Comment